On the family of B-spline surfaces obtained by knot modification
نویسندگان
چکیده
B-spline surfaces are piecewisely defined surfaces where the section points of the domain of definition are called knots. In [2] the authors proved some theorems in terms of knot modification of B-spline curves. Here we generalize these results for oneand two-parameter family of surfaces. An additional result concerning a higher order contact of these surfaces and an envelope is also proved.
منابع مشابه
Knot modification of B-spline curves
The effect of knot modifications on the shape of B-spline and NURBS curves is discussed in this paper. Theoretical results include the description of the path of curve points, obtained by the modification of a knot value, and the examination of the one-parameter family of curves. It is shown that this family has an envelope which is a lower order B-spline or NURBS curve. Applying these results ...
متن کاملThe Effect of Knot Modifications on the Shape of B-spline Curves
This paper is devoted to the shape control of B-spline curves achieved by the modification of one of its knot values. At first those curves are described along which the points of a B-spline curve move under the modification of a knot value. Then we show that the one-parameter family of k order B-spline curves obtained by modifying a knot value has an envelope which is also a B-spline curve of ...
متن کاملConstrained shape modification of cubic B-spline curves by means of knots
The effect of the modification of knot values on the shape of B-spline curves is examined in this paper. The modification of a knot of a Bspline curve of order k generates a one-parameter family of curves.This family has an envelope which is also a B-spline curve with the same control polygon and of order k 2 1: Applying this theoretical result, three shape control methods are provided for cubi...
متن کاملModifying a knot of B-spline curves
The modification of a knot of a B-spline curve of order k generates a family of B-spline curves. We show that an envelope of this family is a B-spline curve defined by the same control polygon, and its order is k −m, where m is the multiplicity of the modified knot. Moreover, their arbitrary order derivatives differ only in a multiplier. 2003 Elsevier Science B.V. All rights reserved.
متن کاملNURBS-Based Isogeometric Analysis Method Application to Mixed-Mode Computational Fracture Mechanics
An interaction integral method for evaluating mixed-mode stress intensity factors (SIFs) for two dimensional crack problems using NURBS-based isogeometric analysis method is investigated. The interaction integral method is based on the path independent J-integral. By introducing a known auxiliary field solution, the mixed-mode SIFs are calculated simultaneously. Among features of B-spline basis...
متن کامل